Jan 7,2020 TUESDAY Lecture 2
Data structures
RECAP
clever way of arranging data in memory so that update/query operations can be performed efficiently.

Range minima Problem
Given an array $A[1 \cdots n]$, indices i, j
output: Minimum element in $A[i \cdots . j]$
Strategy 1 Run a loop from $A[i]$ to $A[j]$ and find the minimum element.

Time: $O(n)$
Storage: $O(1)$ extra words
Strategy 2 Precompute a $n \times n$ matrix B such that

$$
B(i, j)=\min \text { elt } \cdot \text { from } A(i) \text { to } A(j)
$$

Time: $O(1)$
Storage: $O\left(n^{2}\right)$
HW: Can you use a data structure of size $O(n)$ and get an efficient algorithm?

MODEL OF COMPUTATION

How are instructions expected?

- Decode the instruction
- Fetch the operands
- Performs arithmetic/logical operations
- write back the answer to memory

WORD RAM MODEL 1 word : Smallest entity of RAM

- Basic entity of a problem is a word.
- Fetching any word from the RAM takes the

GRAPH MODEL Same amount of time.

- 1 instruction is a few clock cycles.

Fibonacci number
Input: n, m (both int)
output: $F(n) \bmod m$
$1 \mathrm{~min}, 10 \mathrm{~min}, 10$ hour
HW: Implement IFib and RFib, note the time.
IFib: $5+4(n-1)+1$ instructions
$\approx 4 n$ Running time
RFib: Let $G(n)$ be the time taken to compute $\operatorname{RFib}(n, m)$
if $n=0 \quad G(0)=1$

$$
\begin{array}{ll}
n=1 & G(1)=2 \\
n \geqslant 2 & G(n)=3+G(n-1)+G(n-2)
\end{array}
$$

$$
G(n)>F(n) \quad \forall n
$$

Prove: $F(n)>2^{n-2 / 2} \quad$??

$$
G(n)>2^{n-2 / 2}
$$

WARM UP EXAMPLE
Powering:
Input: x, n, m
Output: $x^{n} \bmod m$
Strategy 1 Run a loop for n iterations and compute $x^{n} \bmod m$ $\approx 3 n$

$$
x^{n}=\left\{\begin{array}{l}
\text { if } n=0 \quad x^{n}=x^{0}=1 \\
\text { if } n \text { is even, } x^{n}=x^{n / 2} \times x^{n / 2} \\
\text { if } n \text { is odd, } x^{n}=x^{n / 2} \times x^{n / 2} \times x
\end{array}\right.
$$

Jan 8,2020 WEDNESDAY Lecture 3
Powering:
Input: x, n, m
output: $x^{n} \bmod m$
$\operatorname{Power}(x, n, m)$:
if $(n \geq 0)$ then retum 1
temp $\leftarrow \operatorname{Power}(x, n / 2, m)$
els if $(n \bmod 2=0)$
retum $(\operatorname{temp} \times$ temp $) \bmod m$
else rettern $(\operatorname{temp} \times \operatorname{tem} p \times x) \bmod m$

Let $T(n)=$ no. of inst executed to compute Power (x, m, m)

$$
\begin{aligned}
T(n) & =1+T(n / 2)+4 \\
& =5+T(n / 2)=5 \lg n
\end{aligned}
$$

- can we express $F(n)$ as a^{n} for some const a ? \rightarrow No!

$$
\begin{aligned}
&\binom{F(n)}{F(n-1)}=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F(n-1)}{F(n-2)} \\
& \vdots \\
&=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-1}\binom{F(1)}{\left.F(0)^{1}\right)}
\end{aligned}
$$

Nw: Implement this to get a algo for $F(n) \bmod m$. call this cleverfib.

COMPLEXITY OF AN ALGORITHM
The worst case member of instructions executed white running the algorithm as a function of the input size or some parameter of the input size.

Example
Input size

- $F(n) \bmod m$

$$
\lg n+\lg m
$$

- Given an array A check if A is sorted
- Given a $n \times n$ matrix, output its square

Mat Mull

$$
\operatorname{Mat} \operatorname{Muelt}(C[n, n], D[n, n])
$$

for $i=0$ to $n-1$
for $j=0$ to $n-1$

$$
M(i, j) \longleftarrow 0
$$

for $k=0$ to $n-1$

$$
\begin{aligned}
& \left(\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(1+\sum_{k=0}^{n-1} 2\right)\right)+1 \\
& \quad=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}(2 n+1)+1
\end{aligned}
$$

$$
\begin{align*}
M(i, j)=M(i, j)+ & C(i, k) * D(k, j)-2 \tag{2}\\
& =(2 n+1)\left(n^{2}\right)+1 \\
& =2 n^{3}+n^{2}+1
\end{align*}
$$

Return M-3

Comparing functions
f When comparing two functions g
$2 n^{2}+5 n+100$ values of $n \cdot n^{2}+2 n+50$

$$
2 n^{2}+5 n+100 V
$$

$$
100 n+1000
$$

$\frac{f}{5 n^{2}+n+100}$

$$
\begin{gathered}
\frac{g}{n^{2}+10} \\
\lim _{n \rightarrow \infty} \frac{h}{f}=0
\end{gathered}
$$

$\lim _{n \rightarrow \infty} \frac{g}{f}=\frac{1}{5}$
\rightarrow Only this can be end to predict which f is larger??

Order notation
Let f and g be two increasing functions.
We say f is of the order of g (denoted as $f=O(g)$) if \exists constants n_{0}, C st

$$
\forall n \geqslant n_{0}, \quad f(n) \leqslant c \cdot g(n)
$$

$$
\begin{aligned}
& O\left(5 n^{2}+n+100\right)=O\left(n^{2}\right) \\
& O\left(n^{2}+10\right)=O\left(n^{2}\right)=O\left(n^{3}\right) \\
& O\left(10 n^{1.5}+1000\right)=0\left(n^{1.5}\right)
\end{aligned}
$$

tight bound

HW: Prove the following statements

1) If $f=O(g)$ and $g=O(h)$ then show that $f=O(h)$
2) If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$
3) Is $3^{n}=O\left(2^{n}\right)$? Prove. DONE!

Jan 10, 2020 FRIDAY Lecture 4
Maximum sum Subarray Problem -
Input: An array A
Output: A subarray of A with the maximum sum
Trivial Ago (A) $\{$
$\max \leftarrow A[0]$
for $i=0$ to $n-1\}$
for $j=i$ to $n-1\}$
temp \leftarrow compute_sum (A, i, j) if $\max <$ temp $\max \leftarrow$ temp

$$
\begin{array}{ll}
\} & \text { compute }-\operatorname{sum}(A, i, j)\{ \\
\text { return max } & \text { fum } \leftarrow A(i) \\
& \text { for } k=i+1 \text { to } j \xi
\end{array}
$$

$O(n)$ time algorithm
Max Sum (A) $\{$

$$
S[0] \longleftarrow A[0] \longleftarrow O(1)
$$

for $i=1$ to $n-1\{n-1$ repititions
$\left.\begin{array}{c}\text { if } S[i-1]>0 \quad \text { then } S[i] \leftarrow S[i-1]+A[i] \\ \text { else } S[i] \leftarrow A[i]\end{array}\right\} O(1)$
\}
scan S to find max entry $\rightarrow O(n)$
3
Time complexity: $O(n)$
Max Sum Improved (A) $\{$

$$
\begin{aligned}
& S_{-i}=A[0] \\
& S_{-i-1}=A[0] \\
& \text { for } i=1 \text { to } n-1\{ \\
& S_{-i}=\max \left(A[i], S_{-i}+A[i]\right) \\
& S_{-i-1}=\max \left(S_{-i-1}, S_{-i}\right)
\end{aligned}
$$

return S-i-1
$\}$
HW: Solve the problem in $O(n)$ time using $O(1)$ space

Strategy \rightarrow Efficiency \rightarrow Proof of correctness.
Proof of correctness
\rightarrow For every posisble input the algorithm gives a correct answer.

Prove correctness of the above algorithm.
Finding local Minima in A Grid
$n \times n$ matrix consisting of distinct no. A ell $A(i, y)$ is said to be a local minima if it is smaller than its 4 neighbors.

Input: $n \times n$ matrix A.
output: (i, j) s.t $A(i, j)$ is a local minima

- There always exists a local minima. Global minima is a local minima.

Strategy 1
Explore (A)
$C \longleftarrow$ some cell of A;
while (C is not local minima) $\{$
$\} \quad c \leftarrow$ smallest neighbor of c;
output C;
(1) Every idea is important
(2) Can we solve a simpler variant of the problem?

Local minima in a ID Array

		7	9	12	

there exists a local minima
HW: Give a $0(\lg n)$ time algo for computing local minima in a 10 array.
$\operatorname{Jan} 14,2020$ TUESDAY Lecture 5
PROOF OF CORRECT NESS

- The algorithm outputs the correct answer for all possible inputs.
- Loop invariant

Egg.: // compute $\sum_{i=1}^{n} i$
$\operatorname{Sum}(n)\{$

$$
S \leftarrow 0 ;
$$

for $l=1$ to $n \varepsilon$
output $s ; \ll s+i ;\}$
\qquad
$P(i)$: At the end of the $i^{\text {th }}$ iteration of the for lop,

$$
\uparrow \quad S=\sum_{k=0}^{i} k
$$

Loop invariant
Proof by induction on i
Base care $i=0$

$$
\begin{aligned}
S & =0 \text { by definition } \\
& =\sum_{k=0}^{0} k=0
\end{aligned}
$$

Assume $P(i-1)$ is true
$P(i)$: The value of S
at the end of $(i-1)^{\text {th }}$ iteration $=\sum_{k=0}^{i-1} k$ - By induction hypo.

Now, at the end of the $i^{\text {th }}$ iteration,

$$
s=\sum_{k=0}^{i-1} k+i=\sum_{k=0}^{i} k
$$

Hence proved.
\rightarrow Loop invariant is an assertion that is true at the end of each iteration of the loop.

Mammum Sum Subarray Problem
A: input array
$S:$
$P(i)$: At the end of the $i^{\text {th }}$ iteration of the loop, $S(i)=$ the sum of the max subarray, ending at $A(i)$.

Theorem: If $S(i-1)>0$ then $S(i) \leftarrow S(i-1)+A(i)$ else $\quad S(i) \leftarrow A(i)$
HF: Prove P(i).

Jan 15. 2020 WEDNESDAY Lecture - 6
Theorem: A local minima in a 1D array containing n distinct numbers can be found in $\lg n$ time.

LocMin In Grid (μ) $\{$
$L \leftarrow 0, R \longleftarrow n-1$; found \leftarrow false:
while (not found) $\{$
mid $\longleftarrow(L+R) / 2$;
$\min \leftarrow$ index of the min . elf in $M(*, \operatorname{mid})$;
if (min is a local min) then found \leftarrow true;
else if $M(\min , \operatorname{mid})>M(\min$, mid +1$)$
$L \leftarrow$ mid +1 ;
else $\quad R \leftarrow$ mid -1 ;
\}
reluür M (min, mid);

Proof of correctness:
$P(i)$: Fa local minima between $M(*, L)$ and $M(t, R)$.

$$
\begin{aligned}
& \exists j \text { set } M(j, L)<M(*, L-1) \text { and } \\
& \exists j^{\prime} \text { set } M\left(j^{\prime}, R\right)<M(*, R+1)
\end{aligned}
$$

HW: Give a counter example.

Does not work \rightarrow

Aw:
$O(n)$ implementation for this problem.
Jan 17, 2020 Friday Lecture 7
$G>b>0$

$$
\begin{aligned}
& G C D(a, b)\{ \\
& \text { while }(b \neq 0) \\
& \{t \leftarrow b ; \\
& b \leftarrow a \bmod b ; \\
& a \leftarrow t ;\}
\end{aligned}
$$

$\}$
return a;
Euclid's Theorem: If $a \geq b>0$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
Proof of correctness of GCD algorithm
$P(i)$: Let a_{i} and b_{i} be the values stored in the variables a, b at the end of the $i^{\text {th }}$-iteration. Then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a_{i}, b_{i}\right)
$$

Base case: $\operatorname{gcd}(a, b)=\operatorname{ged}(a, b)$ trivial
Induction hypothesis:

$$
\operatorname{gcd}(\overline{a, b})=\operatorname{gcd}\left(a_{i-1}, b_{i-1}\right)
$$

Now at the end of $i^{\text {th }}$ iteration

$$
\begin{aligned}
a_{i} & =b_{i-1} ; b_{i}=a_{i-1} \bmod b_{i-1} \\
\operatorname{ged}\left(a_{i}, b_{i}\right) & =\operatorname{gcd}\left(b_{i-1}, a_{i-1} \bmod b_{i-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\operatorname{gcd}\left(a_{i-1}, b_{i-1}\right) \quad \text { By Euclid's Theorem }\right] \\
& =\operatorname{gcd}(a, b) \quad[\text { By induction hypotheiss }]
\end{aligned}
$$

Binary Search
Binary Search (A, key)
HW: 1) Write the preudocode of binary search
2) Show the time complexity of binary search
3) Devise a loop invariant and prove the correctness of binary search.

Range Minima Problem

- Given an array Astoring n numbers.
- AIM: To build a data structure such that queries of the following type can be answered efficiently

Range_Minima $(i, j) \rightarrow$ outputs

$$
\min (A(i), A(i+1), \cdots A(j))
$$

our Aim is to optimise the following:-

- Query time
- Space used
- Preprocessing time
$n \simeq 10^{6}, \#$ queries $\approx 10^{7} \equiv m$

Brute force
Space: $O(1)$
Time: $O(n m)$

$$
\simeq 10^{13}
$$

Pere compute $\forall i, j$
Space: $O\left(n^{2}\right) \approx 10^{12}$
Time: $O(1 . m) \approx 10^{7}$.

Aim: Each query $\rightarrow O(1)$ time
Fix i,
Require a data structure of size $O(n)$.
Data structure: $O(n \lg n)$
"Efficient" implementation:
Data structures used:

$$
\begin{aligned}
-\operatorname{Pow}(m) & =2^{k} \quad \text { st } \quad 2^{k} \leq m \\
0 & \leq m \leq n-1 \\
-\log (m) & =\lfloor\lg m\rfloor \\
0 & \leq m \leq n-1 \\
-B(i, k) & =\min \left(A(i), A(i+1), \ldots, A\left(i+2^{k}\right)\right)
\end{aligned}
$$

Range_Minima (i, j)

$$
\begin{aligned}
& L \leftarrow \overline{j-i} ; \\
& t \leftarrow \operatorname{Pow}(L) ; \\
& k \leftarrow \log (L)
\end{aligned}
$$

if $(L=t)$ output $B(i, k)$
else output
$\min (B(i, k), B(j-t, k))$
$O(1) \rightarrow$ For each query
$O(n \lg n) \rightarrow$ additional space
$O\left(n^{2} \lg n\right) \rightarrow$ Preprocessing. Can we do it in $O(n \lg n)$ time?
Hint: Fibonacci

Jan 21, 2020 TUESDAY lecture 8
Data structures
Aim: To manage data in an efficient manner so that queries can be answered efficiently.
Abstract Data Structures
Two things:

1) Give mathematical model of the data structure. \rightarrow A Formal definitions of the various operations
2) Implementation: Efficient way to design the various operations. eeg. - List of students in this class

- list of items in a shop
- list of cases pending in Supreme court

Array based solution

- Can use arrays
- we need an upper bound on the size
- array, current number of elements in it.
- Blocking a large chunk of memory.

Operations on a list

- Query operations

1. Is Empty List (L) : checks if a list is empty
2. Search (L, x) : checks if the element x is present in L.
3. Successor (\mathcal{L}, L) : returns the element in list L after position p.

$$
\text { e.g. } L: \quad x_{1}, x_{2}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n} \text {. }
$$

\uparrow_{p}

$$
\text { Successor }(p, L) \rightarrow x_{i+1}
$$

4. Predecessor ($p, 1$): returns the previous element in list L before position p.

- update operations
- Create Emptylist (L)
- Insert (x, p, L) : inserts element x in to the list L at position p.
- Delete (p, L) : delete the element at position p in L.
- Makelist Empty (l).

Linked list (DLL)

of sold. of went elf.
HW: Implement a list data structure $\begin{aligned} & \text { Quiz on } 9^{\text {th }} \text { Feb } \\ & \text { Sunday }\end{aligned}$

Jan 22,2020 WEDNESDAY lecture 9
Implementing a telephone directory

Operation	Sorted array	sorted list
SEARCH	$O(\lg n)$	$O(n)$
INSERT/DELETE	$O(n)$	$O(1)$

Can we search in $n / 2$ operations in a sorted list?

$$
凶<\square_{1} \cdots \square_{n / 4} \ldots \square_{n / 2}^{\text {head }} \cdots \square_{3 n / 4} \cdots \square_{n} \rightarrow 区
$$

BINARY TREE Start at a root, grow and branch.
At the end of branches you have leaves. Inverted tree structure.

A binary tree is a collection of nodes connected by edges $s-t$

1. Every node has at most 2 outgoing edges
2. There is one node with 0 incoming edges (called root)
3. Every node except for the root has 1 incoming edge.
4. Between every pair of nodes there is at most 4 edge

Some terminologies

- if there is an edge from u to v, then u is called the percent of v and u is a child of u
- The height of a binary tree is the maximum number of edges from the root to a leaf node
- we say binary tree T is perfectly balanced of for all nodes v in T,

$$
\begin{array}{l|l}
\text { featly balanced of for all } \\
\text { der } v \text { in } T,
\end{array} \left\lvert\, \begin{aligned}
& \text { Parent }(y)=x \\
& \text { child }(y)=\{u, w\} \\
& \text { child }(u)=\{v\} \\
& \text { Height }(T)=4
\end{aligned}\right.
$$

THEOREM: Let T be a perfectly balanced binary tree containing n nodes. Then Height $(T) \leq \lg n$

Complete the formal proof

Binary search tree
A binary search tree is a binary tree having values at every node, such that for all nodes $v \in T$,
value $(v) \leqslant$ value of every node in the right subtree of v
value $(v) \geqslant$ value of every node in the left subbree of v

Hew: Write psendocode.

Jan 24, 2020 FRIDAY
Binary search trees

- Search and Insert in a BST

InSERT (52)
Every insertion happens at a leaf node.

HW: Write the prendocode for Search (T, x) and Insert (T, x) in a BST.
$O(H)$ where H is the height (T)
Definition: A binary tree is said to be nearly balanced if at every node v,

$$
\begin{aligned}
& \text { very nodal } v \text {, } \\
& \mid \text { subtree }(\text { left }(v))\left|\leq \frac{3}{4}\right| \text { subtree }(v) \mid \text { and } \\
& \mid \text { Subtree }(\operatorname{right}(v))\left|\leq \frac{3}{4}\right| \text { subtree }(v) \mid
\end{aligned}
$$

Let, $H(n)$ be the height of a nearly balanced binary tree T, with n nodes

$$
\begin{array}{rlrl}
H(n) & \leq H\left(\frac{3 n}{4}\right)+1 & H(1)=0 \\
& \leq H\left(\left(\frac{3}{4}\right)^{2} n\right)+2 \\
& \leq \log _{4 / 3} n=\frac{\lg n}{\lg 4 / 3}=O(\lg n)
\end{array}
$$

- Now suppose we start with a perfectly bulanced BST and beep inserting/deleting nodes then the tree will remain nearly balanced for sometimes.
- We can maintain a fourth field at every node v, \mid subtree $(v) \mid \rightarrow$ sine of subtree rooted at v.

Stack

top of the stuck

- linear
- Insert / delete at the top of the stack only push pop
- we can only query the top of S.
S
Operations on a stack (Mathematical model)
Query
Is Empty (S): checks if S is empty.
- $\operatorname{Top}(S)$: rectums the top element of S.

Update

- Push (s, x) : inserting x at the top of the stack.
- Pop (s): deleting the top element from S.

8 queens problem \rightarrow Can we place 8 queens in a chessboard so that no queen bills any other queen?
\rightarrow stacks

Jan 28, 2020 Tuesday
Stack

- linear data structure
- insert/delete/ query happens on one end (call top)
- Is Empty, Top. $\underbrace{\text { Push pop }}_{\text {query }}$

Evaluating an arithmetic expression

$$
9 * 8^{\wedge} 2-1+3 / 6=9 * 64-1+3 / 6
$$

Precedence of operators

1. \wedge
2. $1, * \downarrow \begin{aligned} & \text { High } \\ & \text { to } \\ & \text { low }\end{aligned}$
3.,+-
$2^{\wedge} 3^{\wedge} 2=512 \mid$ Power is right associative

- Associativity : in an expression with multiple operators of the same precedence which operator gets executed foist.
Λ is right associative

1. - are left associative

Simpler Problem

- No parenthesis
- Every operator is left associative

Algo do multiple seas and solve each operator one by one
Disadvantages - multiple scans

- can only handle a fired set of operators
- case based

$$
n_{1} a_{1} n_{2} O_{2} \overbrace{n_{3} O_{3} n_{4}, O_{4}}^{n_{n}} \ldots
$$

for each operator O_{i} there is a function priority $\left(O_{i}\right)$ s.t if priority $\left(O_{i}\right)>$ priority (O_{j})
Then O_{i} has nigher precedence than O_{j}

$$
E: \begin{gathered}
n_{1} O_{1} n_{2} O_{2} \underbrace{O_{4}}_{\substack{n^{\prime \prime} \\
n_{1} O_{1} n_{2} O_{2} n_{4} \\
n^{\prime} \\
n_{4} \\
n_{5}}} n_{5}
\end{gathered}
$$

- Use two stacks - one for operators, one for operands.

$$
N \text { - stack }
$$

$$
0 \text { - stack }
$$

When can we execute O_{i} immediately?
\rightarrow Priority $\left(0_{i}\right)>\operatorname{Priority}\left(O_{i-1}\right)$

$$
\text { Priority }\left(O_{i}\right) \geqslant \operatorname{Priority}\left(O_{i+1}\right)
$$

$E: \quad n_{1} 0_{1} n_{2} O_{2} \ldots n_{k}$
// Insert a symbol into 0 -stack of least priority while () $\{$
$x \leftarrow$ next token ();
if $(x$ is an operand) $\operatorname{Push}(x, N$ - Stack);
else \{
while (Priority $(x) \leq \operatorname{Priority}(\operatorname{top}(0$, stack $)))$

$$
\left\{\begin{array}{l}
0 \longleftarrow \operatorname{Pop}(0 \text {-stack }) \\
\quad 4 \longleftarrow \operatorname{Pop}(N-\text { stack })
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
t_{2} \leftarrow \operatorname{Pop}(N-\text { stack }) ; \\
t_{3} \longleftarrow t_{2} \circ t_{1} ; \\
\\
\} \\
\} \\
\text { Push }\left(t_{3}, N . \text { stack }\right) \\
\text { Push }(x, O \text {-stack }) ;
\end{array}
\end{aligned}
$$

HW: Allow parentheses $\}$ Re-implement the algo
Allow associativity $\}$
Jan 29,2020 WEDNESDAY
8 queens' problem
4×4 case
Is it possible to place the $4^{\text {th }}$ queen?
 \rightarrow yes!
Ex: Write a program to implement a stack and using the stack solve the 8 queens' problem.

Queue

- Linear data structure
- Insertion happens at the rear and removal happens from the front.
- FIFO
queue

a_{1}	a_{2}	\cdots	a_{n}
\uparrow		\uparrow	
front		rear	

Mathematical modelling of a queue
5) $\{$ - Is Empty (Q) : checks if a queue is empty

- Front (Q): Outputs the element at the front of the
queue. queue. a_{1}, \ldots, a_{n}
$\uparrow_{\text {front }}$
So - Enqueue (x, Q) : Inserts x at the rear of Q
- Dequeue (Q) : Deletes the element at the front and outputs it.
eg; $Q: a_{1}, \ldots, a_{n}$

$$
\begin{aligned}
& \text { Enqueue }(x, Q)-a_{1}, \ldots, a_{n}, x \\
& \text { Dequeue }(Q)-a_{2}, a_{3}, \ldots, a_{n}, x \rightarrow a_{1} \\
& \text { Dequeue }(Q)-a_{3}, a_{4}, \ldots, a_{n}, x \rightarrow a_{2}
\end{aligned}
$$

Implement a queue using arrays

- Size of the queue is at most n.

Enqueue $(x, Q)\{$
rear \leftarrow rear +1
Q (rear) $\leftarrow x$
size \leftarrow size +1
\}
Dequeue (Q) \{
front \leftarrow front +1
size \leftarrow size -1
return (Q (frown t-1)) $\}$

- This implementation might go beyond the array boundary after several enqueue and dequeue.

Work around

$$
\begin{array}{l|l}
\text { Enqueue }(x, Q)\{ & \begin{array}{l}
\text { Dequeue }(Q)\{\text { front } \\
\text { temp } \leftarrow \leftarrow(\text { front }+1) \bmod n \\
\text { rear } \leftarrow(\text { rear }+1) \bmod n \\
\text { Qlrear }) \leftarrow x \\
\text { singe } \leftarrow \text { size }+1
\end{array} \\
\text { sine } \leftarrow \text { size }-1 \\
\} & \text { return }(Q(\text { temp }))
\end{array}
$$

Ex: Implement the Front (Q).
Finding the shortest path in a grid

n| S | | | | |
| :--- | :--- | :--- | :--- | :--- |
| \ln | \ln | m_{n} | | |
| | t | n_{n} | | 4 |
| | | | | |

Some cells are blocked
$2 D$ array fined with i's \& O's sot O's are the blocked cells.

- Given two more calls - Start, target
- Honzontal vertical moves allowed

Problem: find the shortest length path $s \rightarrow t$ using available cull.

$$
\begin{aligned}
& T(n, n)=T(n-1, n)+T(n, n-1) \\
& T(1,1)=1
\end{aligned}
$$

Jan 31, 2020 FRIDAY
Shortest path in a grid
$G(i, j)=1$ if (i, j) is not an obstacle

$$
=0 \text { olhenvire }
$$

- A cell is at a distance i from s if \exists a neighbour that is at a distance $i-1$, and there is no neighbor at distance $<i-1$.

Enumerate_next_layer $\left(G, L_{i-1}\right)\{$
for (each cell c in L_{i-1}) $\{$
on) for (each neighbor b of c that is "empty") \{
o(1) $\}$ Add b to L_{i}
$\}$
Return L_{i};
$\}$
Dist_in_Guid $(G, s)\left\{\quad\right.$ Time complexity $=O\left(n^{3}\right)$
$T \longleftarrow\{s\} ;$
$o\left(n^{2}\right) \in$ for $\left(i=1\right.$ to $\left.n^{2}\right)\{$
$T \leftarrow$ Enumerate_nest layer $(G, T) \rightarrow O(n)$ \}
$L_{0}, L_{1}, \ldots L_{i-1}, L_{i}, L_{i+1}, \ldots$

- use a queue to simplify algorithm.

Shortest_Dist_in_Grid (G,s) $\{$
for (each cell c in G that is not an obs.) $\operatorname{dist}(c) \leftarrow \infty$
$O\left(n^{2}\right) \operatorname{dit}(s) \longleftarrow 0$, $/ /$ Enqueue, enumerate on dequeree
Enqueue (S, Q);
$O\left(n^{2}\right)<$ while (TsEmpty (Q) is false) $\{$
$x \leftarrow$ Dequeue (Q);
(for (each neighbor y of x s.t y is not an obstacle and dist $(y)=\infty)\{$ $\operatorname{dist}(y) \leftharpoonup \operatorname{dist}(x)+1$;
$O(1)$
$\left\{\begin{array}{l}d \\ \\ \}\end{array}\right.$
$\}$
$\}$
Every cell is enqueued at most once and in every iteration of the while loop, one
\} cell gets dequeued.
Time Complexity: $O\left(n^{2}\right)$
Proof of conectness

- At the end, $\operatorname{dist}(c)$ stores the shortest distance from ito c.
$P(i)$: dit correctly stares the shortest distance to every cell that is at a distance ifrom s.
$P(0)$: True
Assume $P(i-1)$ is true \& prove $P(i)$ comp le prot the

Feb 4, 2020 Tuesday
Majority Problem
Given a multiset containing n elements, output an element that occurs $>n / 2$ times if it exists.
Ideai Given an element, checking whether it is majorly element or not can be done in $O(n)$ time.
Algol: check for every element, whether or not it's majority $O(n)$
Algozi - sort

- pick middle dement and check whether or not it's the majority element.
$O(n \lg n)$
An assumption in the previous algorithm is that we can compare two elements as $\langle\rangle,,=$
- If we are only allowed $=\& \neq$ then alga 2 does not work.

$$
S= \begin{cases}a, b, & d, \ldots, x, y \\ c, c, c, d i s, \ldots, c & : \text { majority } d t\end{cases}
$$

- observation 1: If we remove 2 distinct elements from S, then the majointy element is preserved in the new set.

$$
\begin{aligned}
& S=\begin{array}{l|c|}
\hline
\end{array} \\
& S=\begin{array}{|l|l|l|c|}
\hline a
\end{array} \\
& s^{\prime}=\begin{array}{|l|l|l|l|}
\hline a & c & c & b \\
\hline
\end{array}
\end{aligned}
$$

- Observation 2: If S consists of $n / 2$ pain of similar element in each pair then choosing one dement per pact and
creating a set s^{\prime} will ensure that,
S has a majority $\Leftrightarrow S^{\prime}$ has a majority and the element as same

Alg
Assumes size $(s) \longleftarrow 2^{n}$
Input: S

1. pair the elements of $S \rightarrow O(n) \rightarrow O(n)$
2. If a pair has distinct elements then remove it

3 Create a new set by choosing one element per pair having the same element and repeat step 1 4. Finally check if the last element is majority or not.

$$
c n+\frac{c n}{2}+\frac{c n}{4}+\cdots+1 \leq 2 \sigma=0(n)
$$

- uses $O(n)$ extra space
- Aim: - $O(n)$ time
- O(1) extra space
- O(1) peas over the input

Majority (s) \{
count $\leftarrow 0$
for $i=0$ to $n-1\{$
if (count $=0$) $\{$
$x \leftarrow A(i)$;
count $+=1$;

\}
else if $(x=A(i))\{$
count $t=1 ;\}$
else $\{$ count $-=1\}$
$\}$
check if x is maj. or not $\}$

Feb 5,2020 Wednesday
Divide and Conquer
Has 3 parts - 1 Given a problem divide it to two or more sub problems.
2) Assume solutions to the subproblems. Also need to take care of the bare care.
3) Combine solutions of subproblem to get solutions of original problem. Usually the toughest step.

Merging two sorted arrays

How to combine them into a single sorted array?

$$
\begin{gathered}
\text { Merge }(A[0, \ldots, n], B[0, \ldots, m], C)\{\rightarrow 0(n+m) \\
i \leftarrow 0 \quad / / \text { index for } A \\
\\
j \leftarrow 0 \quad \text { I/ index fur } B \\
k \leftarrow 0 \quad / / \text { index for } C
\end{gathered}
$$

white $(i<n$ \& $j<m)\{$

$$
\begin{gathered}
f(A(i)<B(j))\{ \\
c(k) \leftarrow A(i) ; \\
k+f ; i+p ;\}
\end{gathered}
$$

$$
\begin{aligned}
& \text { es \{ } \\
& C(k) \longleftarrow B(j) ; \\
& k+t ; j++;\} \\
& \text { \} } \\
& \text { while }(i<n) \text { \{ } \\
& C(k) \leftarrow A(i) ; i+t ; k+t ;\} \\
& \text { while (} j<m \text {) }\{ \\
& C(k) \leftarrow A C j ; j++; k+t ;\} \\
& \text { MergeSort }(A(i \cdots j))\{ \\
& \text { if }(i<j)\{ \\
& \text { mid } \leftarrow \frac{(i+j)}{2} \text {; } \\
& T(n)=2 T\left(\frac{n}{2}\right)+c n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\left(\frac{n}{2}\right)+C n\right. \\
& =2^{2} T\left(\frac{n}{2^{2}}\right)+2 \mathrm{~cm} \\
& T(n / 2) \leftarrow \operatorname{MergeSort}(A(i, \ldots, \text { mid })) \text {; } \\
& =2^{3} T\left(\frac{n}{2^{3}}\right)+3 \mathrm{cn} \\
& T(n / 2) \leftarrow \text { Mergesort }(A(\operatorname{mid}+1, \ldots, j)) \text {; } \\
& =\lg n \cdot c n=O(n \lg n) \\
& O(n) \leftarrow \operatorname{Merge}(A[i, \ldots, \text { mid }], A(\text { mid }+1, \ldots, j), c)^{\prime} \text {; } \\
& o(n) \longleftarrow \text { copy } C \text { into } A \text {; }
\end{aligned}
$$

MergeSort (A): takes an array A and sorts it.
MergeSort : Sorts an array

- Time: $O(n \lg n)$
-Extraspace: $O(n)$. merge is not possible without this.

Multiplying two n bit integers (the intr assumed)

- Measure of efficiency: no of bit operations
- Add $2 n$-bit numbers. $\longrightarrow O(n)$

$X * y=Z \rightarrow$ naive algorithm
takes $O\left(n^{2}\right)$ bit operations.
n bit n bit
Divide and Conquer

$$
\begin{aligned}
& x: \left.\underbrace{\begin{array}{l|l|}
A & B \\
\frac{n}{2} \\
& C / D
\end{array} \quad y: \quad x / D}_{\frac{n}{2}} \begin{array}{l}
x=A * 2^{n / 2}+B \\
y=C * 2^{n / 2}+D
\end{array} \right\rvert\, x * y=A C * 2^{n}+(A D+B C) 2^{n / 2}+B D
\end{aligned}
$$

$T(n)$: no. of bit operations to multiply 2 nit integers.

$$
\begin{aligned}
T(n) & =4 T\left(\frac{n}{2}\right)+c n \\
& =
\end{aligned}
$$

Feb 7, 2020 Friday
Multiplying $2 n$-bit integer

- $x+y: O(n)$ bit operations
$-x * 2^{n}: O(n)$ bit ops
- $x * y: O\left(n^{2}\right)$ bit ops

Divide \& Conquer Approach

$$
\begin{aligned}
& x=A * 2^{n / 2}+B \\
& y=C * 2^{n / 2}+D \quad y=C \mid B \\
& x * y=A C * 2^{n}+(A D+B C) 2^{n / 2}+B D
\end{aligned}
$$

$T(n)$: Time taken to multiply $2 n$-bit inns

$$
\begin{aligned}
T(n) & =4 T(n / 2)+c n \\
= & 4(4 T(n / 4)+c n / 2)+c n \\
= & 4^{2} T\left(\frac{n}{2^{2}}\right)+c n+2 n \\
= & 4^{2}\left(4 T\left(n / 2^{3}\right)+\frac{n}{2^{2}}\right)+c n+2 c n \\
& \vdots \\
& =4^{\lg n} T(1)+c n+2 n+4 c n+\cdots+2^{\operatorname{lgn}-1} \mathrm{cn} \\
& =O\left(n^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x * y=A C 2^{n}+(A D+B C) 2^{n / 2}+B D \\
& (A-B)(C-D)=A C+B D-A D-B C \\
& A D+B C=A C+B D-(A-B)(C-D) \\
& \text { 1. } A C \\
& T(n)=3 T(n / 2)+c n \\
& \text { 2. } B D \\
& (A-B)(C-D) \\
& =O\left(n^{\lg _{2} 3}\right) \leftarrow \text { verify. }
\end{aligned}
$$

Counting number of inversions in an array
A:

(i, j) is an inversion if $A(i)>A(j)$ for $i<j$
Problem: count the no- of inversions.
Max number of imersions $={ }^{n} C_{2}=\frac{n(n-1)}{2}=O\left(n^{2}\right)$
A:

\uparrow	\uparrow
C_{1} inns	C_{2} ins

Inversion 1 $(A(i ; \ldots j))\{$

$$
\begin{aligned}
& c_{3} \leftarrow 0 ; \\
& \text { if }(i<j) \\
& c_{1} \longleftarrow \text { Inversion 1 }\left(A\left(i, \ldots \frac{i+j}{2}\right)\right) \\
& c_{2} \longleftarrow \text { Inversion } 2\left(A\left(\frac{i+j}{2}+1, \ldots, j\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }\left(k=i \text { to } \frac{i+j}{2}\right)\{ \\
& \operatorname{for}\left(l=\frac{i+j}{2}+1 \text { to } j\right)\{ \\
& \text { \& }(A(k)>A(l)) . \\
& \quad c_{3}++; \\
& \}
\end{aligned}
$$

$$
\text { retie } C_{1}+C_{2}+c_{3}
$$

$$
T(n)=2 T(n / 2)+c n^{2}
$$

$$
=O\left(n^{2}\right) \text { cheerio }
$$

Inversion $2(A(i, \ldots, j))$: Sorts $A(i, \ldots j)$ and returns \# of

$$
\begin{aligned}
& c_{3} \leftarrow 0 ; \\
& \text { if }(i<j) \\
& c_{1} \longleftarrow \operatorname{Inv} 2\left(A\left(i, \ldots \frac{i+f}{2}\right)\right) \\
& c_{2} \leftarrow \operatorname{Inv} 2\left(A\left(\frac{i+1}{2}, \ldots, \cdots, j\right)\right) \\
& \\
& \quad \text { for }\left(k=i \text { to } \frac{i+j}{2}\right)\{
\end{aligned}
$$

do Bin search in $A\left(\frac{i+j}{2}+1, \ldots, j\right)$
to find an index l s.t
$A(i)>A(l)$ and

$$
\begin{aligned}
& A(i) \leq A(l+1) \\
& C_{3} \leftarrow C_{3}+\left(l-\frac{i+j}{2}\right) ;
\end{aligned}
$$

\}
return $C_{1}+C_{2}+C_{3}$;
Merge $\left.\left(A\left(i, \ldots, \frac{i+j}{2}\right), A\left(\frac{i+j}{2}, \ldots, j\right), C\right)\right\}$
ele $\{$ vehurn $0 ;\}$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\underbrace{\frac{n}{2}(\lg n)+c n}_{c^{\prime} n \lg n} \\
& =O\left(n \lg ^{2} n\right)
\end{aligned}
$$

Merge_and-count $(A, i, j, C)\{$
mid $\leftarrow i+j / 2 ; p \in i ; q \in \operatorname{mid}+1 ; k \in 0 ;$ cuunt $\in 0$.
while ($p<$ mid \& $q<j$) $\{$
if $(A(p)<A(q))\{$

$$
C(k) \leftarrow A(p) ; \quad k+t ; p+t ;\}
$$

ebse S
$C(k) \leftarrow A(q) ; \quad k+t ; q+t ;$
count \leftarrow count + (mid-p);
$2\}$
refurn count;
$\}$

Feb 12,2020 wednesday
Solving Reverences using induction

- Given $T(n)$
- Guess an appropriate $f(n)$
- Assume $T(n) \leq f(n) \quad \forall \quad n<m$
- Show that $T(m) \leq f(m)$
- Show $T(1) \leqslant f(1)$

Common Enos

$$
\begin{aligned}
& T(n)=2 T(n / 2)+c_{1} n \\
& T(1)=0
\end{aligned}
$$

Let, $f(n)=O(n)=a_{n}$
Assume $T(n) \leq a n \quad \forall n<m$

$$
\begin{aligned}
T(m) & =2 T(m / 2)+c^{m} \\
& =a m+G m \\
& =O(m) \times \text { incorrect }
\end{aligned}
$$

Solving using the Master Theorem

- multiplicative functions.

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be multiplicative if

$$
f(n) \cdot f(m)=f(n m)
$$

egg., n^{2}

$$
2 n^{2}
$$

$$
\begin{aligned}
& n^{2} \cdot m^{2}=(n m)^{2} \\
& n^{1.5} m^{1.5}=(n m)^{1.5} \\
& 2 n^{2} \cdot 2 m^{2}=4(n m)^{2} \neq 2(m n)^{2}
\end{aligned}
$$

$$
n^{1.5} \quad n^{1.5} m^{1.5}=(n m)^{1.5}
$$

$$
\begin{aligned}
& f\left(a^{k}\right)=[f(a)]^{k} \\
& f\left(n^{-1}\right)=\frac{1}{f(n)}
\end{aligned}
$$

Master Theorem
Coninder a recurrence of the form $T(n)=a T(n / b)+f(n), T(1)=1$ where a, b are constant int and $b>1$ and $f(n)$ is a multiplicative function. Assume $n=b^{k}$ for some k.

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
&\left.=a\left(a T\left(n / b^{2}\right)\right)+f\left(\frac{n}{b}\right)\right)+f(n) \\
&=a^{2} T\left(\frac{n}{b^{2}}\right)+a f\left(\frac{n}{b}\right)+f(n) \\
&=a^{2}\left(a T\left(\frac{n}{b^{3}}\right)+f\left(\frac{n}{b^{2}}\right)\right)+a f\left(\frac{n}{b}\right)+f(n) \\
&=a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& \vdots \\
&=a^{k} T\left(n / b^{k}\right)+a^{k-1} f\left(n / b^{k-1}\right)+\cdots+a f(n / b)+f(n) \\
&=a^{k}+\sum_{i=0}^{k-1} a^{i} f\left(n / b^{i}\right) \\
&=a^{k}+\sum_{i=0}^{k-1} a^{i} \frac{f(n)}{(f(b))^{i}}=a^{k}+f(n) \sum_{i=0}^{k-1}\left(\frac{a}{f(b)}\right)^{i}
\end{aligned}
$$

Consider 3 cases

$$
\begin{aligned}
& -a=f(b) \\
& T(n)=a^{k}+k \cdot f(n) \\
& x^{\log _{y} a}=a^{\log _{y} x} \\
& =a^{k}+k \cdot f(b)^{k} \\
& =a^{k}+k \cdot a^{k} \\
& =a^{k}(k+1) \\
& =a^{\log _{b} n}\left(\log _{b} n+1\right) \\
& =n^{\log _{b} a}\left(\log _{b} n+1\right)=O\left(n^{\log _{b} a} \cdot \log _{b} n\right) \\
& a<f(b) \\
& T(n)=a^{k}+f(n) \cdot \sum_{i=0}^{k-1}\left(\frac{a}{f(b)}\right)^{i} \\
& =a^{k}+f(n) \leq f(n)+f(n)=O(f(n)) \\
& -a>f(b) \\
& T(n)=a^{k}+f(n) \cdot \frac{\left(\frac{a}{f(b)}\right)^{k}-1}{\frac{a}{f(b)}-1} \\
& =a^{k}+f(6)^{k} \cdot \frac{a^{k}-f(b)^{k}}{f(b)^{k}(\underbrace{\frac{a}{f(b)}-1}_{0(1)})} \\
& =O\left(a^{k}\right)=O\left(n^{\log _{b} a}\right) \text {. }
\end{aligned}
$$

In summary

$$
T(n)=a T(n / b)+f(n) \quad ; \quad \begin{cases} & : \quad a=f(b) \\ 0\left(n^{\log _{b} a} \cdot \log _{b} n\right) & \\ 0(f(n)) ; & a<f(b) \\ 0\left(n^{\log _{b} a}\right) & a>f(b)\end{cases}
$$

Feb 14, 2020 Friday

$$
\begin{aligned}
& \text { Quicksort }(A, i, j)\{ \\
& \text { if }(i<j)\{
\end{aligned}
$$

$$
k \in \operatorname{Partition~}(A, i, j) ;
$$

$$
\text { Quicksort (} A, i, k-1 \text {); }
$$

$$
\text { knickesort }(A, k H, j) \text {; }
$$

$$
\}
$$

$$
\}
$$

Partition (A, P, r) \{

$$
\begin{aligned}
& x=A[r] \\
& i=P-1
\end{aligned}
$$

for $j=p$ to $r-1$
if $A[j] \leq 2$ $i=\mathrm{cH}$ exchange $A[i]$ with $A C J]$
exchange $A[i+1]$ with $A[F]$ return it?

Worst care complexity : $O\left(n^{2}\right)$
Average time complexity:

$$
\begin{array}{r}
T_{\operatorname{avg}}(Q S)=\frac{1}{n} \sum T_{A}(\pi) \quad \pi \text { is permutations of } \\
\{1, \ldots, m\}
\end{array}
$$

Where, $T_{A}(\pi)$ is the time taken by as on array A having permutation π.

\rightarrow Time -taken is the same as the relative ordering is same.
\rightarrow we will assume wLoh that A elements from $\{1, \ldots, n\}$
$P_{i}=$ all permutations that start with i.

$$
\left|P_{i}\right|=(n-1)!
$$

$T(n)$: Average time taken by quieksot on an array of size

$$
n \cdot\{1,2, \ldots, n\}
$$

$G(n, i)$: Average tine taken lu as on an array $\{1, \ldots, n\}$ where the first element of array is i.

$$
\begin{aligned}
& T(n)=\frac{1}{n} \sum_{i=1}^{n} G(n, i) \\
& G(n, i)=T(i-1)+T(n-i)+c n \\
& \quad \therefore T(n)=\frac{1}{n} \sum_{i=1}^{n}[T(i-1)+T(n-i)+c n]
\end{aligned}
$$

$$
\begin{aligned}
& =c_{n}+\frac{1}{n} 2 \sum_{i=1}^{n-1} \tau(i) \\
T(n) & =c n+\frac{2}{n} \sum_{i=1}^{n-1} \tau(i)
\end{aligned}
$$

lan be veritten as partial fractions
Using method of induction

$$
\begin{aligned}
& T(n) \leqslant a_{n} \log n+b \\
& \therefore T(1)=d \quad \because \quad(b \geqslant d)
\end{aligned}
$$

Assume $m<n$,

$$
\begin{aligned}
T(m) & \leq a m \log m+b \\
T(n) & =c n+\frac{2}{n} \sum_{i=1}^{n-1} T(i) \\
& =c n+\frac{2}{n} \sum_{i=1}^{n-1}\left(a_{i} \log i+b\right) \\
& =c n+\frac{2}{n}\left(\sum_{i=1}^{n / 2} a_{i} \log i+\sum_{i=\frac{n}{2}+1}^{n-1} a_{i} \log i\right)+2 b \\
& \leq c n+\frac{2}{n}\left(\sum_{\left.2 i \log \frac{n}{2}+\sum_{n / 2} a i \log n\right)+2 b}^{n-1} a i\right)+2 b \\
& =c n+\frac{2}{n}\left(\sum_{i=1}^{n-1} a i \log n-\sum_{i=1}^{n} a n\right. \\
& =c n+\frac{2}{n}\left(\frac{n(n-1)}{2}\right) a \log n-\frac{22}{n} \frac{n}{22}\left(\frac{n / 2-1)}{2} \cdot a+2 b\right.
\end{aligned}
$$

$$
\leq a \log n+b+\underbrace{b+c n-a / 4}_{\leqslant 0}
$$

$$
\frac{a}{4} \geqslant b+c n
$$

